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Using a thin film of deoxyribonucleic acid-cetyltrimetylammonium �DNA-CTMA� complex as a
hole-transporting/electron-blocking layer, we have developed a sequential solution-processing
approach for constructing multilayer �up to five layers� white polymer light-emitting diodes,
incorporating the poly�9,9-dioctylfluorene-2,7-diyl�/poly�2-methoxy-5�2�-ethyl-hexyloxy�-1,
4-phenylene vinylene� emissive layer. These devices were demonstrated to show a low turn-on
voltage ��5 V�, high efficiency �10.0 cd /A�, and high brightness �10500 cd /m2� with an improved
white-color stability. © 2008 American Institute of Physics. �DOI: 10.1063/1.2948864�

White polymer light-emitting diodes1–13 �WPLEDs�
have been previously prepared from polymer blends,1–4,8–13

such as a blend of poly�9,9-dioctylfluorene-2,7-diyl� �PFO�
and poly�2-methoxy-5�2�-ethyl-hexyloxy�-1 4-phenylene vi-
nylene� �MEH-PPV�, in which the wide-band-gap PFO acts
as a host while the narrow-band-gap MEH-PPV as a dopant.
Multilayer configurations, including hole-transporting/
electron-blocking layer �HTL/EBL�, emissive layer �EML�,
and electron-transporting/hole-blocking layer �ETL/HBL�,13

are highly desirable to achieve efficient and balanced carrier
injection in such WPLEDs involving the wide-band-gap
PFO.14 However, it is difficult to incorporate all the above-
mentioned three layers or more into one device by solution
processing only due to the solubility mismatch. In recent
years, water/alcohol-soluble �solution-processable� inorganic
materials11,12 and conjugated polymers15–18 have been devel-
oped as ETL/HBL to enhance electron injection/transport in
multilayer light-emitting devices. For instance, an alcohol-
soluble inorganic cesium carbonate �Cs2CO3� has been used
as the electron injection/hole-blocking layer11 �EIL/HBL� in
a WPLED, achieving the reported highest power efficiency
of 16 lm /W.14–17

The governing principle for a material to be used as
HTL/EBL include: �1� the highest occupied molecular orbital
�HOMO� of HTL/EBL must be at an energy level close to,
or even within the HOMO of EML and �2� the lowest unoc-
cupied molecular orbital �LUMO� of HTL/EBL must be
higher than the LUMO of EML. Although a few of attempts
have been made to modify the anode/PFO interface, no
organic/polymeric HTL/EBL material was found to be ideal.
Sun et al.19 have demonstrated that poly�N ,N�-bis�4-
butylphenyl�-N ,N�-bis�phenyl�benzidine �poly-TPD� was a
promising candidate as HTL in multilayer WPLEDs because
its HOMO level �−5.2 eV� is very close to the work
function of the indium tin oxide �ITO�/poly�3,4-ethylene-
dioxythiophene�:poly�styrenesulfonate� �PEDOT:PSS� an-
ode. Poly-TPD is also a resister to nonpolar organic solvents
�e.g., toluene, xylene� usually used for casting the overlaid

PFO layer. Unfortunately, poly-TPD has no EBL function as
its LUMO level �−2.3 eV� is lower than that of PFO
�−2.2 eV�. Gong et al.13 pioneered in using an alcohol-
soluble polymer, PVK-SO3Li, as HTL/EBL in multilayer
PLEDs without interfacial mixing. However, the LUMO
�−2.25 eV� and HOMO �−5.75 eV� of PVK-SO3Li were not
ideal for its use in the PFO-based devices.

Further to recent reported work on the use of vacuum-
deposited deoxyribonucleic acid-cetyltrimetylammonium
�DNA-CTMA� complexes for electron blocking in organic
light-emitting devices �OLEDs�,20–22 we found that DNA-
CTMA solution cast under appropriate conditions are prom-
ising to be used as HTL/EBL in WPLEDs. The DNA-CTMA
complex is exclusively soluble in alcohol, and can be spin
cast into optically transparent films to exhibit a HOMO of
−5.6 eV and a LUMO of −0.9 eV. Using sequential solution
spin coating, we designed, fabricated, and characterized in
this study bio-WPLEDs with multilayer �up to five layers�
structures, incorporating the DNA-CTMA HTL/EBL.

Four-layer and five-layer WPLEDs with and without the
DNA-CTMA HTL/EBL were fabricated. DNA-CTMA was
prepared according to the reported procedure.21 For the fab-
rication of WPLEDs, we dissolved DNA-CTMA, poly-TPD,
PFO doped with 0.2 % �w /w� MEH-PPV, and Cs2CO3 in

a�Author to whom correspondence should be addressed. Electronic mail:
ldai@udayton.edu.

FIG. 1. �Color online� J-L-V characteristics of device �a� and device �b�
with a 10-, 20-, 30-, 40-nm-thick DNA-CTMA layer. Insets show schematic
device configurations for the four-layer WPLEDs �a� and bio-WPLEDs �b�,
and luminous efficiencies of the devices as a function of the driving current
density.
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butanol, chlorobenzene, toluene, and 2-ethoxyethanol, re-
spectively, and their selective solubility enabled us to deposit
each of the constituent layers without dissolving the under-
lying layer by sequential spin coating. Configurations
of the four-layer devices are: ITO /PEDOT�30 nm� /poly-
TPD�40 nm� /PFO:MEH-PPV�70 nm� /Cs2CO3�1–2 nm� /Al
�device �a��, and ITO/PEDOT�30 nm�/DNA-CTMA�x nm�/
PFO:MEH-PPV�70 nm� /Cs2CO3�1–2 nm� /Al, where x
=10,20,30,40 nm, respectively �device �b��. The five-
layer devices include: ITO/PEDOT�30 nm�/DNA-
CTMA�20 nm�/poly-TPD�40 nm�/PFO:MEH- PPV�70 nm� /
Cs2CO3�1–2 nm� /Al �device �c��, and ITO/PEDOT�30 nm�/
poly- TPD�40 nm�/ DNA-CTMA�20 nm�/ PFO:MEH -PPV
�70 nm� /Cs2CO3�1–2 nm� /Al �device �d��.

Figure 1 shows the current density-luminance-voltage
�J-L-V� characteristics for the four-layer WPLED �device
�a�� and bio-WPLED �device �b�� with various DNA-CTMA
layer thicknesses. The inset shows luminous efficiencies
of these devices as a function of the driving current. Device
�a� turned on at 4.7 V and exhibited a maximum brightness
of 6906 cd /m2 and a maximum luminous efficiency of
7.6 cd /A at �10 mA /cm2. The measured brightness and ef-
ficiency for device �a� are much higher than those of the
corresponding trilayer WPLED with poly-TPD HTL but

without Cs2CO3 EIL/HBL,19 as a chemical reaction occurred
between the spin-coated Cs2CO3 and thermally evaporated
Al to form an Al–O–Cs complex that could significantly re-
duce the work function of the cathode.11,12

The performance of device �b� depends strongly on the
DNA-CTMA layer thickness. Among them, the bio-WPLED
with 20-nm-thick DNA-CTMA showed the best overall per-
formance. It turned on at �6.2 V, exhibiting a maximum
brightness of 4912 cd /m2 and a maximum luminous effi-
ciency of 6.3 cd /A. The current density of the bio-WPLED
with a 40-nm-thick DNA-CTMA layer was one to two orders
of magnitude lower than that of the corresponding device
with 20-nm-thick DNA-CTMA. The turn-on voltage in-
creased from 6.2 to 7.6 V, presumably due to an increase in
the serial resistance with increasing DNA-CTMA layer
thickness. As a result, the maximum brightness and effi-
ciency of device �b� �x=40 nm� reduced to 2291 cd /m2 and
3.0 cd /A at 10 mA /cm2, respectively. On the other hand, the
bio-WPLED of 10-nm-thick DNA-CTMA exhibited a re-
duced turn-on voltage �5.7 V�, lower maximum brightness
�3897 cd /m2�, and luminous efficiency �4.7 cd /A� with re-
spect to device �b� �x=20 nm�, attributable to an increased
leakage current from the relatively thin DNA-CTMA layer.

Figure 2 shows the J-L characteristics for the five-layer
bio-WPLEDs with both poly-TPD and DNA-CTMA layers
of different sequences �i.e., device �c�: DNA-CTMA/poly-
TPD, device �d�: poly-TPD/DNA-CTMA� as the HTL/EBL.
For comparison, the J-L characteristics of device �a� was
also included in Fig. 2. Both devices �c� and �d� exhibited
much improved light outputs than device �a� over a whole
range of the driving current. The maximum brightness
for devices �c� and �d� reached 8100 and 10500 cd /m2, re-
spectively. Consequently, devices �c� and �d� also showed
higher electrominescenic �EL� efficiencies than that of de-
vice �a� �see, inset of Fig. 2�.

The enhanced performance of the bio-WPLEDs can be
rationalized by the combined effects of hole transporting and
electron blocking from DNA-CTMA. The schematic energy
level diagrams for materials involved in all of the four de-
vices are given in Fig. 3. As mentioned above, poly-TPD acts
only as HTL in device �a�. In contrast, DNA-CTMA can act
as both HTL and EBL in device �b� since its HOMO is

FIG. 2. �Color online� J-L characteristics of devices �a�, �c�, and �d�. Insets
show schematic device configurations for the five-layer bio-WPLEDs, and
the luminous efficiency as a function of the current density for devices �a�,
�c�, and �d�, respectively.

FIG. 3. �Color online� Schematic dia-
grams of energy levels for all materi-
als involved in the WPLED and
bio-WPLEDs.
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0.2 eV higher than that of PFO and its LUMO is 1.3 eV
higher than that of PFO.21,23 Comparing device �b� with de-
vice �a�, however, there is a higher energy barrier to over-
come for hole injection from anode to DNA-CTMA �0.6 eV�
than to poly-TPD �0.2 eV�, leading to an increased turn-on
voltage for device �b�. The lower brightness and EL effi-
ciency for device �b� than those of device �a� �Fig. 1� indi-
cates that the superior hole-transporting mobility of poly-
TPD in device �a� over performed the dual hole-transporting
and electron-blocking functions of DNA-CTMA.

Comparing with the four-layer devices �i.e., devices �a�
and �b��, the five-layer bio-WPLEDs �i.e., Devices �c� and
�d�� showed much better performance resulted from both the
hole-transporting and electron-blocking capabilities of DNA-
CTMA, coupled with the excellent hole-transporting capabil-
ity of poly-TPD. As can be seen in Fig. 3, device �d� allows
an easy hole injection from ITO/PEDOT anode to poly-TPD,
followed by an efficient transport through DNA-CTMA into
the HOMO of PFO. Meanwhile, electrons at the LUMO
level of PFO injected from the cathode were completely
blocked by the adjacent DNA-CTMA layer. Consequently,
the holes and electrons can undergo radiative recombination
most efficiently in the EML in device �d�, leading to its su-
perb device performance. In device �c�, holes need to over-
come the relatively high energy barrier between ITO/PEDOT
anode and DNA-CTMA while electrons can still partially
transport from the LUMO of PFO to the LUMO of poly-
TPD before being blocked by the DNA-CTMA layer. There-
fore, device �c� exhibited poorer performance with respect to
device �d�, as shown in Fig. 2.

Figure 4 shows the voltage dependence of EL spectra for
device �d� to demonstrate the color stability of the bio-
WPLED. Device �d� exhibited stable and pure white emis-
sion that is composed of the blue emission from PFO and the
orange emission from MEH-PPV, since all charge carriers
were confined within the EML by the use of DNA-CTMA
HTL/EBL and Cs2CO3 EIL/HBL. Although the EL spectra
shown in Fig. 4 were obtained from 8 to 16 V over more
than two orders of magnitude variation of the current density,
the emission intensity of PFO only slightly increased com-
pared to that from MEH-PPV. The slight spectrum change
with increased voltages is typical for WPLEDs based on
polymer blends.6,19 The emission from the high-energy states

�PFO� starts to be populated after that from the low-energy
states �MEH-PPV� becomes saturated. As shown in the inset
of Fig. 4, device �d� exhibited an improved white-color sta-
bility under continuous operation �left inset of Fig. 4�. In
contrast, the corresponding device without the poly-TPD and
DNA-CTMA HTL with a device structure of ITO/
PEDOT�30 nm�/PFO:MEH-PPV�70 nm� /Cs2CO3�1–2 nm�/
Al showed a decreased orange emission from MEH-PPV
during the continuous operation �right inset of Fig. 4�,11 pre-
sumably due to a thermal phase separation of dopant from
host caused by the inefficient hole injection.

In summary, we have developed a sequential solution-
processing approach for constructing multilayer �up to five
layers� WPLEDs consisting of a PEDOT hole-injecting layer,
poly-TPD HTL, DNA-CTMA HTL/EBL, PFO/MEH-PPV
EML, and Cs2CO3 EIL/HBL. The unique hole-transporting/
electron-blocking properties and selective solubility make
the DNA-CTMA biopolymer an attractive HTL/EBL mate-
rial for the development of multilayer polymer devices, as
exemplified by the efficient multilayer bio-WPLEDs devel-
oped in this study. These bio-WPLEDs were characterized
by a low turn-on voltage ��5 V�, high efficiency
�10.0 Cd /A�, high brightness �10500 cd /m2�, and improved
white-color stability.

This work was partly funded by AFOSR �FA9550-06-1-
0384� and AFRL/RX.
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